Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
1.
Lancet HIV ; 11(5): e285-e299, 2024 May.
Article in English | MEDLINE | ID: mdl-38692824

ABSTRACT

BACKGROUND: An effective HIV vaccine will most likely need to have potent immunogenicity and broad cross-subtype coverage. The aim of the HIV Vaccine Trials Network (HVTN) 124 was to evaluate safety and immunogenicity of a unique polyvalent DNA-protein HIV vaccine with matching envelope (Env) immunogens. METHODS: HVTN 124 was a randomised, phase 1, placebo-controlled, double-blind study, including participants who were HIV seronegative and aged 18-50 years at low risk for infection. The DNA vaccine comprised five plasmids: four copies expressing Env gp120 (clades A, B, C, and AE) and one gag p55 (clade C). The protein vaccine included four DNA vaccine-matched GLA-SE-adjuvanted recombinant gp120 proteins. Participants were enrolled across six clinical sites in the USA and were randomly assigned to placebo or one of two vaccine groups (ie, prime-boost or coadministration) in a 5:1 ratio in part A and a 7:1 ratio in part B. Vaccines were delivered via intramuscular needle injection. The primary outcomes were safety and tolerability, assessed via frequency, severity, and attributability of local and systemic reactogenicity and adverse events, laboratory safety measures, and early discontinuations. Part A evaluated safety. Part B evaluated safety and immunogenicity of two regimens: DNA prime (administered at months 0, 1, and 3) with protein boost (months 6 and 8), and DNA-protein coadministration (months 0, 1, 3, 6, and 8). All randomly assigned participants who received at least one dose were included in the safety analysis. The study is registered with ClinicalTrials.gov (NCT03409276) and is closed to new participants. FINDINGS: Between April 19, 2018 and Feb 13, 2019, 60 participants (12 in part A [five men and seven women] and 48 in part B [21 men and 27 women]) were enrolled. All 60 participants received at least one dose, and 14 did not complete follow-up (six of 21 in the prime-boost group and eight of 21 in the coadminstration group). 11 clinical adverse events deemed by investigators as study-related occurred in seven of 48 participants in part B (eight of 21 in the prime-boost group and three of 21 in the coadministration group). Local reactogenicity in the vaccine groups was common, but the frequency and severity of reactogenicity signs or symptoms did not differ between the prime-boost and coadministration groups (eg, 20 [95%] of 21 in the prime-boost group vs 21 [100%] of 21 in the coadministration group had either local pain or tenderness of any severity [p=1·00], and seven [33%] vs nine [43%] had either erythema or induration [p=0·97]), nor did laboratory safety measures. There were no delayed-type hypersensitivity reactions or vasculitis or any severe clinical adverse events related to vaccination. The most frequently reported systemic reactogenicity symptoms in the active vaccine groups were malaise or fatigue (five [50%] of ten in part A and 17 [81%] of 21 in the prime-boost group vs 15 [71%] of 21 in the coadministration group in part B), headache (five [50%] and 18 [86%] vs 12 [57%]), and myalgia (four [40%] and 13 [62%] vs ten [48%]), mostly of mild or moderate severity. INTERPRETATION: Both vaccine regimens were safe, warranting evaluation in larger trials. FUNDING: US National Institutes of Health and US National Institute of Allergy and Infectious Diseases.


Subject(s)
AIDS Vaccines , HIV Antibodies , HIV Infections , HIV-1 , Vaccines, DNA , Humans , AIDS Vaccines/administration & dosage , AIDS Vaccines/immunology , AIDS Vaccines/adverse effects , Adult , Male , Female , Double-Blind Method , Vaccines, DNA/administration & dosage , Vaccines, DNA/immunology , Vaccines, DNA/adverse effects , HIV Infections/prevention & control , HIV Infections/immunology , Middle Aged , Young Adult , HIV Antibodies/blood , Adolescent , HIV-1/immunology , United States , Immunization, Secondary , Immunogenicity, Vaccine , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp120/genetics , Antibodies, Neutralizing/blood
2.
bioRxiv ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38559193

ABSTRACT

TF profiler is a method of inferring transcription factor regulatory activity, i.e. when a TF is present and actively regulating transcription, directly directly from nascent sequencing assays such as PRO-seq and GRO-seq. Transcription factors orchestrate transcription and play a critical role in cellular maintenance, identity and response to external stimuli. While ChIP assays have measured DNA localization, they fall short of identifying when and where transcription factors are actively regulating transcription. Our method, on the other hand, uses RNA polymerase activity to infer TF activity across hundreds of data sets and transcription factors. Based on these classifications we identify three distinct classes of transcription factors: ubiquitous factors that play roles in cellular homeostasis, driving basal gene programs across tissues and cell types, tissue specific factors that act almost exclusively at enhancers and are themselves regulated at transcription, and stimulus responsive TFs which are regulated post-transcriptionally but act predominantly at enhancers. TF profiler is broadly applicable, providing regulatory insights on any PRO-seq sample for any transcription factor with a known binding motif.

3.
J Infect Dis ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38451247

ABSTRACT

Current serological tests for HIV screening and confirmation of infection present challenges to the adoption of HIV vaccines. The detection of vaccine-induced HIV-1 antibodies in the absence of HIV-1 infection, referred to as vaccine-induced seropositivity/seroreactivity, confounds the interpretation of test results, causing misclassification of HIV-1 status with potential affiliated stigmatization. For HIV vaccines to be widely adopted with high community confidence and uptake, tests that are agnostic to vaccination status (i.e., only positive for true HIV-1 infection) of tested individuals are needed. Successful development and deployment of such tests will require HIV vaccine developers to work in concert with diagnostic developers. Such tests will need to match today's high-performance standards (accuracy, cost-effectiveness, simplicity) for use in both vaccinated and unvaccinated populations, especially in low- and middle-income countries with high HIV burden. Herein, we discuss the challenges and strategies for developing modified serological HIV tests for concurrent deployment with HIV vaccines.

4.
EBioMedicine ; 100: 104987, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38306894

ABSTRACT

BACKGROUND: Elicitation of broad immune responses is understood to be required for an efficacious preventative HIV vaccine. This Phase 1 randomized controlled trial evaluated whether administration of vaccine antigens separated at multiple injection sites vs combined, fractional delivery at multiple sites affected T-cell breadth compared to standard, single site vaccination. METHODS: We randomized 90 participants to receive recombinant adenovirus 5 (rAd5) vector with HIV inserts gag, pol and env via three different strategies. The Standard group received vaccine at a single anatomic site (n = 30) compared to two polytopic (multisite) vaccination groups: Separated (n = 30), where antigens were separately administered to four anatomical sites, and Fractioned (n = 30), where fractions of each vaccine component were combined and administered at four sites. All groups received the same total dose of vaccine. FINDINGS: CD8 T-cell response rates and magnitudes were significantly higher in the Fractioned group than Standard for several antigen pools tested. CD4 T-cell response magnitudes to Pol were higher in the Separated than Standard group. T-cell epitope mapping demonstrated greatest breadth in the Fractioned group (median 8.0 vs 2.5 for Standard, Wilcoxon p = 0.03; not significant after multiplicity adjustment for co-primary endpoints). IgG binding antibody response rates to Env were higher in the Standard and Fractioned groups vs Separated group. INTERPRETATION: This study shows that the number of anatomic sites for which a vaccine is delivered and distribution of its antigenic components influences immune responses in humans. FUNDING: National Institute of Allergy and Infectious Diseases, NIH.


Subject(s)
AIDS Vaccines , HIV Infections , Humans , Epitopes , CD4-Positive T-Lymphocytes , Vaccination , Immunoglobulin G
5.
BMC Health Serv Res ; 24(1): 253, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38414045

ABSTRACT

BACKGROUND: Germline cancer genetic testing has become a standard evidence-based practice, with established risk reduction and screening guidelines for genetic carriers. Access to genetic services is limited in many places, which leaves many genetic carriers unidentified and at risk for late diagnosis of cancers and poor outcomes. This poses a problem for childhood cancer survivors, as this is a population with an increased risk for subsequent malignant neoplasms (SMN) due to cancer therapy or inherited cancer predisposition. The ENGaging and Activating cancer survivors in Genetic services (ENGAGE) study evaluates the effectiveness of an in-home, collaborative PCP model of remote telegenetic services to increase uptake of cancer genetic testing in childhood cancer survivors compared to usual care options for genetic testing. METHODS: The ENGAGE study is a 3-arm randomized hybrid type 1 effectiveness and implementation study within the Childhood Cancer Survivor Study population which tests a clinical intervention while gathering information on its delivery during the effectiveness trial and its potential for future implementation among 360 participants. Participants are randomized into three arms. Those randomized to Arm A receive genetic services via videoconferencing, those in Arm B receive these services by phone, and those randomized to Arm C will receive usual care services. DISCUSSION: With many barriers to accessing genetic services, innovative delivery models are needed to address this gap and increase uptake of genetic services. The ENGAGE study evaluates the effectiveness of an adapted model of remote delivery of genetic services to increase the uptake of recommended genetic testing in childhood cancer survivors. This study assesses the uptake in remote genetic services and identify barriers to uptake to inform future recommendations and a theoretically-informed process evaluation which can inform modifications to enhance dissemination beyond this study population and to realize the benefits of precision medicine. TRIAL REGISTRATION: This protocol was registered at clinicaltrials.gov (NCT04455698) on July 2, 2020.


Subject(s)
Cancer Survivors , Neoplasms , Humans , Child , Neoplasms/genetics , Genetic Testing
6.
J Virol ; 98(3): e0156323, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38323811

ABSTRACT

Macrophages are important target cells for diverse viruses and thus represent a valuable system for studying virus biology. Isolation of primary human macrophages is done by culture of dissociated tissues or from differentiated blood monocytes, but these methods are both time consuming and result in low numbers of recovered macrophages. Here, we explore whether macrophages derived from human induced pluripotent stem cells (iPSCs)-which proliferate indefinitely and potentially provide unlimited starting material-could serve as a faithful model system for studying virus biology. Human iPSC-derived monocytes were differentiated into macrophages and then infected with HIV-1, dengue virus, or influenza virus as model human viruses. We show that iPSC-derived macrophages support the replication of these viruses with kinetics and phenotypes similar to human blood monocyte-derived macrophages. These iPSC-derived macrophages were virtually indistinguishable from human blood monocyte-derived macrophages based on surface marker expression (flow cytometry), transcriptomics (RNA sequencing), and chromatin accessibility profiling. iPSC lines were additionally generated from non-human primate (chimpanzee) fibroblasts. When challenged with dengue virus, human and chimpanzee iPSC-derived macrophages show differential susceptibility to infection, thus providing a valuable resource for studying the species-tropism of viruses. We also show that blood- and iPSC-derived macrophages both restrict influenza virus at a late stage of the virus lifecycle. Collectively, our results substantiate iPSC-derived macrophages as an alternative to blood monocyte-derived macrophages for the study of virus biology. IMPORTANCE: Macrophages have complex relationships with viruses: while macrophages aid in the removal of pathogenic viruses from the body, macrophages are also manipulated by some viruses to serve as vessels for viral replication, dissemination, and long-term persistence. Here, we show that iPSC-derived macrophages are an excellent model that can be exploited in virology.


Subject(s)
Dengue Virus , HIV-1 , Induced Pluripotent Stem Cells , Macrophages , Models, Biological , Orthomyxoviridae , Virology , Animals , Humans , Cell Differentiation/genetics , HIV-1/growth & development , HIV-1/physiology , Induced Pluripotent Stem Cells/cytology , Macrophages/cytology , Macrophages/metabolism , Macrophages/virology , Orthomyxoviridae/growth & development , Orthomyxoviridae/physiology , Pan troglodytes , Dengue Virus/growth & development , Dengue Virus/physiology , Fibroblasts/cytology , Monocytes/cytology , Virus Replication , Flow Cytometry , Gene Expression Profiling , Chromatin Assembly and Disassembly , Viral Tropism , Virology/methods , Biomarkers/analysis , Biomarkers/metabolism
7.
bioRxiv ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38045276

ABSTRACT

Zinc (Zn2+) is an essential metal required by approximately 2500 proteins. Nearly half of these proteins act on DNA, including > 850 human transcription factors, polymerases, DNA damage response factors, and proteins involved in chromatin architecture. How these proteins acquire their essential Zn2+ cofactor and whether they are sensitive to changes in the labile Zn2+ pool in cells remain open questions. Here, we examine how changes in the labile Zn2+ pool affect chromatin accessibility and transcription factor binding to DNA. We observed both increases and decreases in accessibility in different chromatin regions via ATAC-seq upon treating MCF10A cells with elevated Zn2+ or the Zn2+-specific chelator tris(2-pyridylmethyl)amine (TPA). Transcription factor enrichment analysis was used to correlate changes in chromatin accessibility with transcription factor motifs, revealing 477 transcription factor motifs that were differentially enriched upon Zn2+ perturbation. 186 of these transcription factor motifs were enriched in Zn2+ and depleted in TPA, and the majority correspond to Zn2+ finger transcription factors. We selected TP53 as a candidate to examine how changes in motif enrichment correlate with changes in transcription factor occupancy by ChIP-qPCR. Using publicly available ChIP-seq and nascent transcription datasets, we narrowed the 50,000+ ATAC-seq peaks to 2164 TP53 targets and subsequently selected 6 high-probability TP53 binding sites for testing. ChIP-qPCR revealed that for 5 of the 6 targets, TP53 binding correlates with the local accessibility determined by ATAC-seq. These results demonstrate that changes in labile zinc directly alter chromatin accessibility and transcription factor binding to DNA.

8.
bioRxiv ; 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38105978

ABSTRACT

Gene transcription is controlled and modulated by regulatory regions, including enhancers and promoters. These regions are abundant in unstable, non-coding bidirectional transcription. Using nascent RNA transcription data across hundreds of human samples, we identified over 800,000 regions containing bidirectional transcription. We then identify highly correlated transcription between bidirectional and gene regions. The identified correlated pairs, a bidirectional region and a gene, are enriched for disease associated SNPs and often supported by independent 3D data. We present these resources as an SQL database which serves as a resource for future studies into gene regulation, enhancer associated RNAs, and transcription factors.

9.
BMC Biol ; 21(1): 228, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37946204

ABSTRACT

BACKGROUND: The increase in DNA copy number in Down syndrome (DS; caused by trisomy 21) has led to the DNA dosage hypothesis, which posits that the level of gene expression is proportional to the gene's DNA copy number. Yet many reports have suggested that a proportion of chromosome 21 genes are dosage compensated back towards typical expression levels (1.0×). In contrast, other reports suggest that dosage compensation is not a common mechanism of gene regulation in trisomy 21, providing support to the DNA dosage hypothesis. RESULTS: In our work, we use both simulated and real data to dissect the elements of differential expression analysis that can lead to the appearance of dosage compensation, even when compensation is demonstrably absent. Using lymphoblastoid cell lines derived from a family with an individual with Down syndrome, we demonstrate that dosage compensation is nearly absent at both nascent transcription (GRO-seq) and steady-state RNA (RNA-seq) levels. Furthermore, we link the limited apparent dosage compensation to expected allelic variation in transcription levels. CONCLUSIONS: Transcription dosage compensation does not occur in Down syndrome. Simulated data containing no dosage compensation can appear to have dosage compensation when analyzed via standard methods. Moreover, some chromosome 21 genes that appear to be dosage compensated are consistent with allele specific expression.


Subject(s)
Down Syndrome , Humans , Down Syndrome/genetics , X Chromosome , Dosage Compensation, Genetic , Gene Expression Regulation , DNA
10.
EClinicalMedicine ; 64: 102168, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37936652

ABSTRACT

Background: The literature on first generation COVID-19 vaccines show they were less effective against new SARS-CoV-2 variants of concern including Omicron (BA.1, BA.2, BA.4 and BA.5 subvariants). New vaccines developed against variant strains may provide cross-protection against emerging variants when used as boosters and facilitate vaccination across a range of countries, healthcare settings and populations. However, there are no data on such vaccines when used as a primary series. Methods: A global Phase 3, multi-stage efficacy study (NCT04904549) among adults (≥18 years) was conducted in 53 research centres in eight countries (United States, Honduras, Japan, Colombia, Kenya, India, Ghana, Nepal). Participants were randomized 1:1 to receive two intramuscular injections of a monovalent SARS-CoV-2 recombinant protein vaccine with AS03-adjuvant (10 µg of the spike (S) protein from the ancestral D614 strain) or placebo on Day 1 (D01) and Day 22 (D22). The primary efficacy endpoint was prevention of virologically confirmed SARS-CoV-2 infection with symptoms of COVID-19-like illness (CLI) ≥14 days after the second injection (post-dose 2 [PD2]) in participants who were SARS-CoV-2 naïve on D01 + D22. Safety and reactogenicity were also evaluated. Findings: Between May 26 and November 7, 2021, 10,114 participants received ≥1 study injection, and 9441 participants received both injections. 2108 (20.8%) participants were SARS-CoV-2 naïve at D01 and D22. The primary endpoint was analysed in a subset of the full analysis set (the modified full analysis set PD2 [mFAS-PD2], excluding participants who did not complete the vaccination schedule or received vaccination despite meeting one of the contraindication criteria, had onset of symptomatic COVID-19 between the first injection and before 14 days after the second injection, or participants who discontinued before 14 days after the second injection [n = 9377; vaccine, n = 4702; placebo, n = 4675]). Data were available for 2051 SARS-CoV-2 naïve and 7159 non-naïve participants. At the cut-off date (January 28, 2022), symptomatic COVID-19 was reported in 169 naïve participants (vaccine, n = 81; placebo, n = 88) ≥14 days PD2, with a vaccine efficacy (VE) of 15.3% (95% CI, -15.8; 38.2). VE regardless of D01/D22 serostatus was 32.9% (95% CI, 15.3; 47.0) and VE in non-naïve participants was 52.7% (95% CI, 31.2; 67.9). Viral genome sequencing was performed up to the data cut-off point and identified the infecting strain in 99/169 adjudicated cases in the PD2 naïve population (Delta [25], Omicron [72], other variants [3], one participant had infection with both Delta and Omicron variants and has been included in the totals for both Delta and Omicron). The vaccine was well-tolerated with an acceptable safety profile. Interpretation: In the context of changing circulating viral variants, it is challenging to induce protection in naïve individuals with a two-dose priming schedule based on the parental D614 strain. However, while the primary endpoint of this trial was not met, the results show that a monovalent D614 vaccine can still be of value in individuals previously exposed to SARS-CoV-2. Funding: This study was funded in whole or in part by Sanofi and by federal funds from the Biomedical Advanced Research and Development Authority, part of the office of the Administration for Strategic Preparedness and Response at the U.S. Department of Health and Human Services under contract number HHSO100201600005I, and in collaboration with the U.S. Department of Defense Joint Program Executive Office for Chemical, Biological, Radiological, and Nuclear Defense under contract number W15QKN-16-9-1002. The views presented here are those of the authors and do not purport to represent those of the Department of the Army, the Department of Health and Human Services, or the U.S. government.

11.
Hum Genomics ; 17(1): 83, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37670378

ABSTRACT

BACKGROUND: RUNX1 is a transcription factor and a master regulator for the specification of the hematopoietic lineage during embryogenesis and postnatal megakaryopoiesis. Mutations and rearrangements on RUNX1 are key drivers of hematological malignancies. In humans, this gene is localized to the 'Down syndrome critical region' of chromosome 21, triplication of which is necessary and sufficient for most phenotypes that characterize Trisomy 21. MAIN BODY: Individuals with Down syndrome show a higher predisposition to leukemias. Hence, RUNX1 overexpression was initially proposed as a critical player on Down syndrome-associated leukemogenesis. Less is known about the functions of RUNX1 in other tissues and organs, although growing reports show important implications in development or homeostasis of neural tissues, muscle, heart, bone, ovary, or the endothelium, among others. Even less is understood about the consequences on these tissues of RUNX1 gene dosage alterations in the context of Down syndrome. In this review, we summarize the current knowledge on RUNX1 activities outside blood/leukemia, while suggesting for the first time their potential relation to specific Trisomy 21 co-occurring conditions. CONCLUSION: Our concise review on the emerging RUNX1 roles in different tissues outside the hematopoietic context provides a number of well-funded hypotheses that will open new research avenues toward a better understanding of RUNX1-mediated transcription in health and disease, contributing to novel potential diagnostic and therapeutic strategies for Down syndrome-associated conditions.


Subject(s)
Down Syndrome , Female , Humans , Core Binding Factor Alpha 2 Subunit , Hematopoiesis , Chromosomes, Human, Pair 21 , Carcinogenesis
12.
Lancet Respir Med ; 11(11): 975-990, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37716365

ABSTRACT

BACKGROUND: COVID-19 vaccines with alternative strain compositions are needed to provide broad protection against newly emergent SARS-CoV-2 variants of concern. This study aimed to describe the clinical efficacy and safety of a bivalent SARS-CoV-2 recombinant protein vaccine as a two-injection primary series during a period of circulation of the omicron (B.1.1.529) variant. METHODS: We conducted a phase 3, parallel, randomised, modified double-blind, placebo-controlled trial in adults aged 18 years or older at 54 clinical research centres in eight countries (Colombia, Ghana, India, Kenya, Mexico, Nepal, Uganda, and Ukraine). Participants were recruited from the community and randomly assigned (1:1) by use of an interactive response technology system to receive two intramuscular 0·5 mL injections, 21 days apart, of the bivalent vaccine (5 µg of ancestral [D614] and 5 µg of beta [B.1.351] variant spike protein, with AS03 adjuvant) or placebo (0·9% normal saline). All participants, outcome assessors, and laboratory staff performing assays were masked to group assignments; those involved in the preparation and administration of the vaccines were unmasked. Participants were stratified by age (18-59 years and ≥60 years) and baseline SARS-CoV-2 rapid serodiagnostic test positivity. Symptomatic COVID-19 was defined as laboratory-confirmed (via nucleic acid amplification test or PCR test) COVID-19 with COVID-19-like illness symptoms. The primary efficacy endpoint was the clinical efficacy of the bivalent vaccine for prevention of symptomatic COVID-19 at least 14 days after the second injection (dose 2). Safety was assessed in all participants receiving at least one injection of the study vaccine or placebo. This trial is registered with ClinicalTrials.gov (NCT04904549) and is closed to recruitment. FINDINGS: Between Oct 19, 2021, and Feb 15, 2022, 13 002 participants were enrolled and randomly assigned to receive the first dose of the study vaccine (n=6512) or placebo (n=6490). 12 924 participants (6472 in the vaccine group and 6452 in the placebo group) received at least one study injection, of whom 7542 (58·4%) were male and 9693 (75·0%) were SARS-CoV-2 non-naive. Of these 12 924 participants, 11 543 (89·3%) received both study injections (5788 in the vaccine group and 5755 in the placebo group). The efficacy-evaluable population after dose 2 comprised 11 416 participants (5736 in the vaccine group and 5680 in the placebo group). The median duration of follow-up was 85 days (IQR 50-95) after dose 1 and 58 days (29-70) after dose 2. 121 symptomatic COVID-19 cases were reported at least 14 days after dose 2 (32 in the vaccine group and 89 in the placebo group), with an overall vaccine efficacy of 64·7% (95% CI 46·6 to 77·2). Vaccine efficacy against symptomatic COVID-19 was 75·1% (95% CI 56·3 to 86·6) in SARS-CoV-2 non-naive participants and 30·9% (-39·3 to 66·7) in SARS-CoV-2-naive participants. Viral genome sequencing identified the infecting strain in 68 (56·2%) of 121 cases (omicron [BA.1 and BA.2] in 63; delta in four; and both omicron and delta in one). Immediate unsolicited adverse events were reported by four (<0·1%) participants in the vaccine group and seven (0·1%) participants in the placebo group. Immediate unsolicited adverse reactions within 30 min after any injection were reported by four (<0·1%) participants in the vaccine group and six (<0·1%) participants in the placebo group. In the reactogenicity subset with available data, solicited reactions (solicited injection-site reactions and solicited systemic reactions) within 7 days after any injection occurred in 1398 (57·8%) of 2420 vaccine recipients and 983 (40·9%) of 2403 placebo recipients. Grade 3 solicited reactions were reported by 196 (8·1%; 95% CI 7·0 to 9·3) of 2420 vaccine recipients and 118 (4·9%; 4·1 to 5·9) of 2403 placebo recipients within 7 days after any injection, with comparable frequencies after dose 1 and dose 2 in the vaccine group. At least one serious adverse event occurred in 30 (0·5%) participants in the vaccine group and 26 (0·4%) in the placebo group. The proportion of adverse events of special interest and deaths was less than 0·1% in both study groups. No adverse event of special interest, serious adverse event, or death was deemed to be treatment related. There were no reported cases of thrombosis with thrombocytopenia syndrome, myocarditis, pericarditis, Bell's Palsy, or Guillain-Barré syndrome, or other immune-mediated diseases. INTERPRETATION: The bivalent variant vaccine conferred heterologous protection against symptomatic SARS-CoV-2 infection in the epidemiological context of the circulating contemporary omicron variant. These findings suggest that vaccines developed with an antigen from a non-predominant strain could confer cross-protection against newly emergent SARS-CoV-2 variants, although further investigation is warranted. FUNDING: Sanofi, US Biomedical Advanced Research and Development Authority, and the US National Institute of Allergy and Infectious Diseases.


Subject(s)
COVID-19 , Vaccines , Adult , Female , Humans , Male , COVID-19/prevention & control , COVID-19 Vaccines , Double-Blind Method , SARS-CoV-2/genetics , Vaccines, Combined , Adolescent , Young Adult , Middle Aged
13.
BMC Res Notes ; 16(1): 181, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37608297

ABSTRACT

OBJECTIVES: The glucocorticoid receptor (GR) is a well-studied, ligand-activated transcription factor and a common target of anti-inflammatory treatments. Recently, several studies have drawn attention the effects of binding of GR to RNA rather than DNA and the potential implications of this activity for GR function. The objective of our study was to further characterize the relationship between GR function and RNA binding by measuring changes in the glucocorticoid-driven transcriptome in the presence of a GR mutant that exhibited reduced RNA affinity. DATA DESCRIPTION: GR was activated in three cell lines containing GR constructs (GR-HaloTag). One of the cell lines contained a wild-type GR-HaloTag. Another contained GR-HaloTag with a mutation that reduced RNA affinity and slightly reduced DNA affinity. The third cell line contained GR-HaloTag with a mutation that only slightly reduced DNA affinity. All three cell lines were treated with dexamethasone, a GR agonist. RNA-seq samples were collected every hour for 3 h. Moreover, transcriptome quantification was accomplished via labeling of RNAs transcribed in the final hour of dexamethasone treatment using 4-thiouridine. These labeled RNAs were then purified and sequenced. This data set is the first of its kind for GR and contains valuable insights into the function of RNA binding by GR.


Subject(s)
Receptors, Glucocorticoid , Transcriptome , Receptors, Glucocorticoid/genetics , Glucocorticoids/pharmacology , RNA , Dexamethasone/pharmacology
14.
bioRxiv ; 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37461585

ABSTRACT

Hyperactive interferon (IFN) signaling is a hallmark of Down syndrome (DS), a condition caused by trisomy 21 (T21); strategies that normalize IFN signaling could benefit this population. Mediator-associated kinases CDK8 and CDK19 drive inflammatory responses through incompletely understood mechanisms. Using sibling-matched cell lines with/without T21, we investigated Mediator kinase function in the context of hyperactive IFN in DS. Activation of IFN-response genes was suppressed in cells treated with the CDK8/CDK19 inhibitor cortistatin A, and this occurred through suppression of IFN-responsive transcription factor activity. Moreover, we discovered that CDK8/CDK19 affect splicing, a novel means by which Mediator kinases control gene expression. Kinase inhibition altered splicing in pathway-specific ways and selectively affected IFN-responsive gene splicing in T21 cells. To further probe Mediator kinase function, we completed cytokine screens and untargeted metabolomics experiments. Cytokines are master regulators of inflammatory responses; by screening 105 different cytokine proteins, we show that Mediator kinases help drive IFN-dependent cytokine responses at least in part through transcriptional regulation of cytokine genes and receptors. Metabolomics revealed that Mediator kinase inhibition altered core metabolic pathways, including broad up-regulation of anti-inflammatory lipid mediators. Elevated levels of lipid mediators persisted at least 24hr after Mediator kinase inhibition, and many identified lipids serve as ligands for nuclear receptors (e.g. PPAR, LXR) or G-protein coupled receptors (GPCRs; e.g. FFAR4). Notably, ligand-dependent activation of these GPCRs or nuclear receptors will propagate anti-inflammatory signaling pathways and gene expression programs, and this mechanistic link suggests that metabolic changes caused by CDK8/CDK19 inhibition can durably and independently suppress pro-inflammatory IFN responses. Collectively, our results establish that Mediator kinase inhibition antagonizes IFN signaling through transcriptional, metabolic, and cytokine responses, with implications for DS and other chronic inflammatory conditions.

15.
Sci Rep ; 13(1): 9385, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37296231

ABSTRACT

The glucocorticoid receptor (GR) is a ligand-activated transcription factor that regulates a suite of genes through direct binding of GR to specific DNA promoter elements. GR also interacts with RNA, but the function of this RNA-binding activity remains elusive. Current models speculate that RNA could repress the transcriptional activity of GR. To investigate the function of the GR-RNA interaction on GR's transcriptional activity, we generated cells that stably express a mutant of GR with reduced RNA binding affinity and treated the cells with the GR agonist dexamethasone. Changes in the dexamethasone-driven transcriptome were quantified using 4-thiouridine labeling of RNAs followed by high-throughput sequencing. We find that while many genes are unaffected, GR-RNA binding is repressive for specific subsets of genes in both dexamethasone-dependent and independent contexts. Genes that are dexamethasone-dependent are activated directly by chromatin-bound GR, suggesting a competition-based repression mechanism in which increasing local concentrations of RNA may compete with DNA for binding to GR at sites of transcription. Unexpectedly, genes that are dexamethasone-independent instead display a localization to specific chromosomal regions, which points to changes in chromatin accessibility or architecture. These results show that RNA binding plays a fundamental role in regulating GR function and highlights potential functions for transcription factor-RNA interactions.


Subject(s)
Dexamethasone , Receptors, Glucocorticoid , Receptors, Glucocorticoid/metabolism , Transcriptional Activation , Dexamethasone/pharmacology , Dexamethasone/metabolism , Transcription Factors/metabolism , Glucocorticoids/pharmacology , Chromatin , DNA/metabolism , RNA , Binding Sites
16.
Stem Cell Reports ; 18(6): 1325-1339, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37315524

ABSTRACT

Skeletal muscle function and regenerative capacity decline during aging, yet factors driving these changes are incompletely understood. Muscle regeneration requires temporally coordinated transcriptional programs to drive myogenic stem cells to activate, proliferate, fuse to form myofibers, and to mature as myonuclei, restoring muscle function after injury. We assessed global changes in myogenic transcription programs distinguishing muscle regeneration in aged mice from young mice by comparing pseudotime trajectories from single-nucleus RNA sequencing of myogenic nuclei. Aging-specific differences in coordinating myogenic transcription programs necessary for restoring muscle function occur following muscle injury, likely contributing to compromised regeneration in aged mice. Differences in pseudotime alignment of myogenic nuclei when comparing aged with young mice via dynamic time warping revealed pseudotemporal differences becoming progressively more severe as regeneration proceeds. Disruptions in timing of myogenic gene expression programs may contribute to incomplete skeletal muscle regeneration and declines in muscle function as organisms age.


Subject(s)
Cell Nucleus , Stem Cells , Animals , Mice , Aging/genetics , Muscle, Skeletal , Gene Expression
17.
bioRxiv ; 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37333218

ABSTRACT

Background: Trisomy 21, also known as Down syndrome, describes the genetic condition of having an extra copy of chromosome 21. The increase in DNA copy number has led to the "DNA dosage hypothesis", which claims that the level of gene transcription is proportional to the gene's DNA copy number. Yet many reports have suggested that a proportion of chromosome 21 genes are dosage compensated back towards typical expression levels (1.0x). In contrast, other reports suggest that dosage compensation is not a common mechanism of gene regulation in Trisomy 21, providing support to the DNA dosage hypothesis. Results: In our work, we use both simulated and real data to dissect the elements of differential expression analysis that can lead to the appearance of dosage compensation even when compensation is demonstrably absent. Using lymphoblastoid cell lines derived from a family of an individual with Down syndrome, we demonstrate that dosage compensation is nearly absent at both nascent transcription (GRO-seq) and steady-state RNA (RNA-seq) levels. Conclusions: Transcriptional dosage compensation does not occur in Down syndrome. Simulated data containing no dosage compensation can appear to have dosage compensation when analyzed via standard methods. Moreover, some chromosome 21 genes that appear to be dosage compensated are consistent with allele specific expression.

18.
BMC Med Res Methodol ; 23(1): 147, 2023 06 24.
Article in English | MEDLINE | ID: mdl-37355583

ABSTRACT

BACKGROUND: To produce quality data that informs valid clinical trial results and withstands regulatory inspection, trial sites should adhere to many complex and dynamic requirements. Understanding non-conformance to requirements informs the emerging field of improvement science. We describe protocol deviations in South Africa's largest HIV vaccine efficacy trial. METHODS: We analysed data from the HVTN 702 trial using mixed methods. We obtained descriptive statistics, from protocol deviation case report forms collected from 2016-2022, of deviation by participant, trial site, and time to site awareness. We thematically analysed text narratives of deviation descriptions, corrective and preventive actions, generating categories, codes and themes which emerged from the data. RESULTS: For 5407 enrollments, 4074 protocol deviations were reported (75 [95% CI: 73.0-77.6] deviations per 100 enrolments). There was a median of 1 protocol deviation per participant (IQR 1-2). Median time from deviation to site awareness was 31 days (IQR 0-146). The most common category of deviation type was omitted data and/or procedures (69%), and 54% of these omissions were stated to have arisen because of the national lockdown at the beginning of the COVID-19 pandemic. The ratio of protocol deviations to cumulative enrolments was highest in the year 2020 (0.34). Major themes of deviations were: COVID-19 and climate disasters giving rise to deviation trends, subroutines introducing an opportunity for deviation, and document fragmentation (such as requirements dispersed across multiple guidance documents) as an obstacle. Preventive action categories were: no preventive measures; discipline, training and/or awareness; quality review, checking and verifying and changing the process and/or implementation tools. Major themes of preventive actions were that systems-based actions are unusual, with people-based actions dominating, and that root cause analysis was rarely mentioned. CONCLUSIONS: In the age of infectious and climate disaster risks, trials may benefit from simple study designs and trial-related documents. To optimise protocol adherence, sponsors and sites should consider ongoing training, and routinely review deviation reports with a view to adjusting processes. These data quality lessons may inform future trial design, training and implementation. TRIAL REGISTRATION: HVTN 702 was registered with the South African National Clinical Trials Register (DOH-27-0916-5327) and ClinicalTrials.gov ( NCT02968849 ).


Subject(s)
COVID-19 , HIV Infections , Natural Disasters , Humans , Communicable Disease Control , Data Accuracy , HIV Infections/prevention & control , Pandemics/prevention & control , South Africa , Vaccine Efficacy , Clinical Trials as Topic
19.
PLOS Glob Public Health ; 3(4): e0001782, 2023.
Article in English | MEDLINE | ID: mdl-37018240

ABSTRACT

There is limited data about bacterial STIs in MSM populations in sub-Saharan Africa. Our retrospective analysis used data from the HVTN 702 HIV vaccine clinical trial (October 2016 to July 2021). We evaluated multiple variables. Polymerase chain reaction testing was conducted on urine and rectal samples to detect Neisseria gonorrhoea (NG) and Chlamydia trachomatis (CT) every 6 months. Syphilis serology was conducted at month 0 and thereafter every 12 months. We calculated STI prevalence and the associated 95% confidence intervals until 24 months of follow-up. The trial enrolled 183 participants who identified as male or transgender female, and of homosexual or bisexual orientation. Of these, 173 had STI testing done at month 0, median age was 23 (IQR 20-25) years, with median 20.5 (IQR 17.5-24.8) months follow-up (FU). The clinical trial also enrolled and performed month 0 STI testing on 3389 female participants, median age 23 (IQR 21-27) years, median 24.8 (IQR 18.8-24.8) months FU and 1080 non-MSM males with a median age of 27 (IQR 24-31) years, median 24.8 (IQR 23-24.8) months FU. At month 0, CT prevalence was similar in MSM and females (26.0% vs 23.0%, p = 0.492) but was more prevalent in MSM compared to non-MSM males (26.0% vs 14.3%, p = 0.001). CT was the most prevalent STI among MSM at months 0 and 6 but declined from month 0 to month 6 (26.0% vs 17.1%, p = 0.023). In contrast, NG did not decline in MSM between months 0 and 6 (8.1% vs 7.1%, p = 0.680) nor did syphilis prevalence between months 0 and 12 (5.2% vs 3.8%, p = 0.588). Bacterial STI burden is higher in MSM compared to non-MSM males, and CT is the most prevalent bacterial STI amongst MSM. Preventive STI vaccines, especially against CT, may be helpful to develop.

20.
Vaccine ; 41(16): 2696-2706, 2023 04 17.
Article in English | MEDLINE | ID: mdl-36935288

ABSTRACT

BACKGROUND: HIV subtypes B and C together account for around 60% of HIV-1 cases worldwide. We evaluated the safety and immunogenicity of a subtype B DNA vaccine prime followed by a subtype C viral vector boost. METHODS: Fourteen healthy adults received DNA plasmid encoding HIV-1 subtype B nef/tat/vif and env (n = 11) or placebo (n = 3) intramuscularly (IM) via electroporation (EP) at 0, 1, and 3 months, followed by IM injection of recombinant vesicular stomatitis virus encoding subtype C Env or placebo at 6 and 9 months. Participants were assessed for safety, tolerability of EP, and Env-specific T-cell and antibody responses. RESULTS: EP was generally well tolerated, although some device-related adverse events did occur, and vaccine reactogenicity was mild to moderate. The vaccine stimulated Env-specific CD4 + T-cell responses in greater than 80% of recipients, and CD8 + T-cell responses in 30%. Subtype C Env-specific IgG binding antibodies (bAb) were elicited in all vaccine recipients, and antibody-dependent cell-mediated cytotoxicity (ADCC) responses to vaccine-matched subtype C targets in 80%. Negligible V1/V2 and neutralizing antibody (nAb) responses were detected. CONCLUSIONS: This prime/boost regimen was safe and tolerable, with some device-related events, and immunogenic. Although immunogenicity missed targets for an HIV vaccine, the DNA/rVSV platform may be useful for other applications. CLINICALTRIALS: gov: NCT02654080.


Subject(s)
AIDS Vaccines , HIV Infections , Vaccines, DNA , Vesicular Stomatitis , Adult , Animals , Humans , Immunization, Secondary , HIV Infections/prevention & control , Electroporation , Antibodies, Neutralizing , DNA , HIV Antibodies
SELECTION OF CITATIONS
SEARCH DETAIL
...